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Abstract— Human-in-the-loop (HITL) optimization of ex-
oskeleton control during assisted walking can improve human
mobility and reduce the energy cost. This process involves
human-robot coadaptation as suggested by prior studies. There
was a drop in the same subjects metabolic cost under the same
assisted walking condition before and after the optimization
process. It means the subjects adapted to walking with the
exoskeleton while the exoskeleton learned the optimal control
parameters for the subjects. We analyzed the process of human
bodies learning to walk with an ankle exoskeleton, aiming
to quantify the characteristics of human-robot coadaptation
during HITL optimization of exoskeleton control. Data of eleven
participants from prior experiments were utilized in this study.
We identified similar sample conditions for each participant
and investigated the trend of metabolic cost along with the
HITL exoskeleton control optimization process. Results showed
that the relationship between human metabolic cost and the
time past in the optimization cycle approximately followed
exponential curves with widespread adaptation rates. For the
optimization process of four parameters with each condition
sampled for two minutes, the time constants were averaged
at 238 ± 207 optimization sample conditions. Our results can
provide guidance to the training process of robot assisted
human motion.

I. INTRODUCTION

Exoskeletons that can augment human strength or enhance

human locomotor performance have attracted researchers for

more than a century [1], [2]. As a result, in the last twenty

years a couple of commercial products and laboratorial

devices have achieved this goal to some extent to interact

with humans and assist humans in walking or running [3].

Recently the Carnegie Mellon University developed a wear-

able ankle exoskeleton whose control parameters are system-

atically changed to maximize the performance of exoskeleton

assisted human walking [4]. When humans are assisted by

a robotic exoskeleton, they need to adjust themselves to

learn to motion collaboratively with the exoskeleton and vice

versa. Here we call this a coadaptation process. However,

exoskeleton assisted human walking can be featured by

nonlinear, complex and time-varying dynamics [4]. It’s a

challenge to quantitatively analyze the process of human-

robot coadaptation during robots assisted human motion or

rehabilitation.

There is a critical need to understand the characteristics of

human-robot coadaptation during human-in-the-loop (HITL)
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optimization of exoskeleton control. Ijspeert [5] indicated

that biorobotics can be used as scientific tools to investi-

gate animal adaptive behaviors, further study the adaptive

behaviors of human bodies. Felt et al. [6] presented instanta-

neous cost gradient search method to automatically identify

assistive devices parameters and it was the first time that

energy cost online optimization performed with the human

body in the loop. Selinger [7] developed a lightweight robotic

exoskeleton resisted motion of the knee joints and found that

humans can optimize energy cost in real time. Jackson et al.
[8] designed experiments to research the independent effects

of net exoskeleton work and average exoskeleton torque on

human locomotion and collected experimental data used to

improve predictive models of human neuromuscular adapta-

tion. Mooney et al. [9] analyzed the energetics and lower

extremity mechanics of human walking with and without

an powered ankle exoskeleton and emphasized the need for

comprehensive models of human interact with exoskeleton.

Koller et al. [10] used pneumatically actuated ankle ex-

oskeletons to study a new type of human-robot interaction of

online controller parameters optimization. Galle et al. [11]

research the relationship between actuation timing, power

and metabolic rate of powered ankle-foot exoskeletons. How-

ever, there were few researches concerning the characteristics

of human-exoskeleton coadaptation during the process of

HITL exoskeleton control optimization.

In this study, we investigated the process of human bodies

adapting to exoskeleton assisted walking and quantified the

characteristics of human-robot coadaptation of HITL opti-

mization of exoskeleton control. Metabolic rate data and

assisted control law conditions during optimization process

of each participant were used from our previous experi-

ments [4]. We constructed Importance Coefficient values

for controller parameters shape the assisted torque through

experiments. Moreover, by choosing the threshold values of

each participant and defined relative distance of different

sample assisted conditions in optimization cycle, the similar

sample conditions were identified. Based on similar sample

conditions, we used Nelder-Mead method to fit the metabolic

cost of each participant under similar sample conditions

and investigated the trend of metabolic cost along with the

experienced sample conditions. We expected an exponential

characteristics curve of human-exoskeleton coadaptation, as

Fig.1 (a) shows. As time goes by, human bodies adaptation

level increases gradually, from fast adaptation period to

slow adaptation period. As a result, the metabolic cost of

the human body decreased to some extent before and after

the HITL exoskeleton control optimization process. Our
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study may to some extent provide an intuitive understanding

of the characteristics of human-robot coadaptation during

exoskeletons assisted walking.
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Fig. 1. (a) The characteristics between a human’s adaptation level and
adaptation time. (b) Parameterization of ankle torque.

II. METHOD

A. Experimental Setup

A tethered, torque-controlled 1-DoF wearable ankle ex-

oskeleton emulator was used as a platform to conduct our

research [4]. Platform structure can be seen from Fig. 2. The

exoskeleton emulator was composed of three main modules:

an off-board control module, a transmission module and an

ankle exoskeleton. The off-board control module was com-

prised of a high-speed control system (ACE1103, dSPACE)

and an electric motor (BSM90N-175AD, Baldor Electric).

The transmission module was composed of a uni-directional

Bowden cable transmission with a series leaf spring. Series-

elastic transmission can improve torque tracking performance

and is safety in human-exoskeleton interaction [12], [13].

The ankle exoskeleton was constructed mainly by a carbon

fiber exoskeleton frame and a digital optical encoder (E8P,

US Digital) that measured ankle joint angular. The structure

of ankle exoskeleton used in the system was described in

detail in [14].

off-board control 

module

transmission 

module
ankle-foot 

exoskeleton

Fig. 2. Structure of the exoskeleton emulator platform.

Each control law condition determined the applied ex-

oskeleton ankle torque as a function of time, normalized to

stride period. It has a hill-like shape as shown in Fig.1 (b).

As shown in Fig.1 (b), four primary parameters were selected

to define the ankle torque curve: peak torque τp, peak torque

time tp, rise time tr, and fall time tf . Peak time tp represents

the beginning of a stride to the peak ankle torque time; rise

time tr represents the onset time to the peak ankle torque

time; peak torque τp represents the maximum ankle torque

value; fall time tf represents the peak torque time to the zero

torque point.
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Fig. 3. (a) P1’s 64 sample conditions parameters during exoskeleton
assisted walking. (b) P1’s metabolic rate data over 64 sample conditions.

A Covariance Matrix Adaption Evolution Strategy (CMA-

ES) was used to optimize the exoskeleton control parame-

ters which can minimize the metabolic energy cost during

walking for each participant. CMA-ES fits for non-linear,

non-convex and noisy optimizing problems [15]. We chose

a population size of eight exoskeleton control laws for each

generation. For each participant, from previous experiments

[4], we optimized four generations. Most participants opti-

mized another four generations in addition to test whether

the optimization had converged. For example, Fig. 3 (a)

shows P1’s 64 sample conditions parameters during ex-

oskeleton assisted walking. Estimated metabolic rate which

we mentioned in the following paragraphs was used as the

objective function of HITL exoskeleton control optimization.

An overview of the algorithm is presented as pseudo-code

in proceeding sections.

According to [16] and previous experiments [4], each

sample condition needs two minutes walking to estimate

the metabolic rate. Breath-by-breath rates of O2 consump-

tion and CO2 production were collected through wireless

portable respirometry system (Oxycon Mobile; CareFusion).

Then method in [16], [17] was used to estimate the real-time

metabolic rate. Fig. 3 (b) takes P1’s metabolic rate during

64 exoskeleton sample conditions for example.

Eleven healthy subjects (N = 11, 5 female and 6 male; age

= 27± 4.2 [24− 37] years; body mass = 69.6± 14.1 [50−
93] kg; height = 1.75 ± 0.10 m; mean±standard deviation

[range];) provided written informed consent and participated

in this study. Participants details can be seen in Table I.

B. Normalization

From previous experiments [4], we introduced limits to

constraint the four control parameters. The first parameter of

peak torque’s maximum value is restricted in 1 N.m.kg−1,

which is one Newton meter for each kilogram of subject’s

body mass. Peak torque time is constrained to between 10%
and 55% of stride. Rise time is restricted to between 10%
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Algorithm 1 Human-in-the-loop optimization of exoskeleton

control using CMA-ES

Require: Number of optimization variables N, step size σ,

stop fitness ε, initial means of optimization variables m.

1: Initialize intermediate parameters λ, μ, ωi, cσ , dσ, μcov ,

ccov to default values, set evolution paths pσ = 0, pc =
0 and set covariance matrix C = I .

2: while Not meet termination criterion do
3: Generate λ offsprings contained control parameters

τp, tp, tr, tf
4: Evaluate metabolic cost as objective function of each

offspring of control parameters

5: Sort by metabolic costs and compute weighted mean

into m
6: Cumulation: Update evolution paths pσ, pc

7: Adapt covariance matrix C and step size σ
8: Decomposition of C = BD2BT

9: Break, if exceed max iterations or meet stop fitness

10: end while
11: return

TABLE I

PARTICIPANTS DETAILS

Participant Gender Body mass (kg) Exoskeleton Experience

P1 F 57 NO
P2 M 80 YES
P3 F 50 NO
P4 M 83 NO
P5 M 86 YES
P6 M 70 NO
P7 F 68 YES
P8 F 59 YES
P9 F 55 YES
P10 M 65 NO
P11 M 93 NO

and 40% of stride time. At last, fall time is constrained to

between 5% and 20% of the stride period.

Control parameters normalization can be calculated by

Equ.(1).

p1 =
p1

subject weight

p2 =
p2 − 10

55− 10

p3 =
p3 − 10

40− 10

p4 =
p4 − 5

20− 5

(1)

where pi represents original control parameters; pi(i =
1, 2, 3, 4) represents normalized control parameters. The

mean and standard deviation of all participants’ four param-

eters after normalization are shown in Fig. 4 (b).

C. Identifying Similar Sample Conditions

Because there are no strictly identical sample assist condi-

tions in our experiment, we need to select a variety groups of

similar conditions for each participant. A weighted distance

between different conditions and same threshold values in

four control parameters are used to selected similar condi-

tions from each participant’s all sample conditions. We iterate

all conditions of each subject, then take the current condition

in each iteration as reference condition and use Equ. (2) to

select conditions are similar to reference condition. In order

to increase the accuracy of characteristic curves fitting results

of human-exoskeleton coadaptation, at least eight conditions

are contained in a similar conditions group.

wi|pij − pri| ≤ ε (2)

where wi is the weight of each control parameter, i =
1, 2, 3, 4 refers to ith parameter; pij is the jth condition of

parameter i of each participant; pri is the reference condition

of parameter i in current iteration; ε is the threshold value

of each control parameter, and the four control parameters’

threshold values of each participant are the same.

Weight value of each control parameter is defined by

optimized control law parameter values of all participants.

The range of optimized control parameters of all participants

can be seen in Fig. 4 (a).
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Fig. 4. (a) Range of optimized control law parameters of all participants. (b)
Averaged mean and standard deviation of all participants sample conditions
after normalization.

[11] indicated that assistance actuation timing and ex-

oskeleton power have a great influence on metabolic cost

during walking. Meanwhile, previous experiment [4] sug-

gested that the parameters of peak torque and peak time had

a greater influence on metabolic cost during walking than

other parameters. So we introduce Importance Coefficient

(ImpC) to represent the importance of each parameter. ImpC

of each parameter is calculated by the following equation:

ri =
1

rangei
(3)

where i represents the ith parameter; rangei is the optimized

range value of ith parameter in Fig. 4 (a). The value of ImpC

of each parameter can be seen in Table II.

Weight value of each parameter depends on ImpC. We

scale the ImpC and let the sum of weight values equal to one

to achieve final weight value of each parameter. The weight

value of each parameter can be seen in Table III. Weight

values also can reflect the importance of each parameter.
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Fig. 5. All participants selected similar sample conditions and characteristic curves of human-robot coadaptation.

TABLE II

IMPORTANCE COEFFICIENT VALUE OF EACH PARAMETER

r1 r2 r3 r4

4.35 10 1.43 1.56

TABLE III

WEIGHT VALUE OF EACH PARAMETER

w1 w2 w3 w4

0.25 0.58 0.08 0.09

D. Characteristic Curve Fitting of Similar Sample Condi-
tions

Nelder-Mead method is used to minimize objective func-

tion aiming to fit the metabolic cost of each participant

under similar sample conditions. Nelder-Mead method is a

heuristic search method commonly used to solve nonlinear

optimization problem [18]. We expected an exponential

effect of experienced sample conditions on metabolic energy

cost of each participant. We use the following Equ. (4) to fit

the selected similar sample conditions of each participant.

fmetaR(n)
k
i = ai + bie

−n
τ (4)

where k represents the kth participant; ai, bi are exponential

curve fitting parameters of the ith condition; τ represents

the time constant of one participant. For one certain partici-

pant, different exponential curve fittings have the same time

constant τ .

RMSE between curve fitting values and real metabolic

rates are selected as the objective function:

Gk =

√√√√ N∑
i=1

[(ai + bie
− t(i)

τk )− real(t(i))]2 (5)

where N is the quantity of each participant selected fixed

conditions; ai, bi, τk are exponential curve fitting parameters

to be optimized; k represents the kth participant and i
represents the ith fixed condition of each participant; t(i)
is the ith condition’s moment.

RMSE and Coefficients of determination (R2) are calcu-

lated to evaluate how well the characteristic curves match

with the selected similar conditions.
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TABLE IV

DIFFERENT CURVE FITTING RESULTS OF HUMAN-ROBOT COADAPTATION

Participant
Exponential curves Linear curves Power curves

RMSE R2 RMSE R2 RMSE R2

P1 0.636 0.80 0.579 0.83 0.825 0.73
P2 0.543 0.07 0.543 0.07 0.541 0.12
P3 0.585 0.60 0.590 0.59 0.551 0.65
P4 0.478 0.27 0.515 0.27 0.484 0.28
P5 0.355 0.55 0.357 0.54 0.349 0.58
P6 0.524 0.27 0.560 0.20 0.521 0.17
P7 0.214 0.75 0.216 0.75 0.212 0.73
P8 0.686 0.49 0.687 0.49 0.702 0.48
P9 0.738 0.82 0.809 0.77 0.677 0.88

P10 0.303 0.21 0.303 0.21 0.303 0.20
P11 0.231 0.81 0.229 0.82 0.258 0.75

0.481 0.513 0.490 0.504 0.493 0.501

III. RESULTS

Based on CMA-ES optimizing four parameters of each

sample condition, participants walked 32 to 64 powered

exoskeleton sample conditions. Each sample condition needs

2 minutes’ walk to estimate the metabolic rate. There was

no rest between two sample conditions. Because of physical

limitations, participants would have a rest after 32 sample

conditions. Because P2 has a significant difference in char-

acteristic curves and time constant from other participants,

so we statistically analyze all participants results except P2.

As shown in Fig.5 (a)-(k), there was a drop in the same

participant’s metabolic cost under the same assisted walking

condition before and after the HITL exoskeleton control

optimization process. The relationship between participants’

metabolic cost and the time past in the optimization cycle

approximately follows exponential curves. However, the time

constants τ of all participants are different. Time constants

range from 31 to 769 (experienced sample conditions), and

with an averaged value of 238± 207 sample conditions. P1

and P9 have relatively small time constants, which are 59
and 31 when using 64 and 32 sample conditions, respec-

tively. According to human-robot coadaptation characteristic

curves of each participant, metabolic cost decreased with an

average value of 13.15± 10.59% and range from 1.96% to

32.73% before and after the optimization process. Human-

robot coadaptation characteristic curves details for different

participants are shown in Table V.

More in detail, we compare the exponential characteristic

curves with linear characteristic curves and power charac-

teristic curves to illustrate the human-robot coadaptation

process of walking follow exponential downward trend.

Linear and power characteristic curves results are shown

in Table IV. For each participant, the threshold value ε
and selected similar conditions groups among exponential

characteristic curves and other characteristic curves are the

same, which can be seen in Table V. Averaged RMSE

of exponential characteristic curves is 0.481, 1.73% lower

than linear characteristic curves whose averaged RMSE is

0.490, and 2.37% lower than power characteristic curves

whose averaged RMSE is 0.493. Averaged R2 of exponential

characteristic curves is 0.513, 1.81% greater than linear

characteristic curves whose averaged R2 is 0.504, and 2.34%
greater than power characteristic curves whose averaged R2

is 0.501.

IV. DISCUSSION

The overall goal of our study is to quantitatively analyze

the characteristics of human-robot coadaptation of HITL

optimization of exoskeleton control. As shown in our results,

the RMSE and R2 of exponential characteristic curves are

better than linear characteristic curves and power character-

istic curves. Results demonstrate the process of human-robot

coadaptation of a HITL optimization of exoskeleton control

in accordance with exponential characteristic curves.

From our characteristic curves shown in Fig. 5 (a) and

(f), the metabolic rate of P1 and P9 decreased exponentially

before and after the optimization process. It also means they

have a faster adaptation rate than other participants. This

phenomenon in line with what we found in the experiments.

In previous experiments, though there was no prior expe-

rience in using exoskeleton, P1 adapted quickly to walking

with the ankle exoskeleton. The body of P9 was already tired

before the experiment, therefore exoskeleton assistance was

importance when P9 used exoskeleton to assist walking.

From Fig.5 (b), the metabolic cost of P2 along with

the optimization process increased slightly. Because P2 had

extensive experience in using exoskeleton, he might not

increase the human-robot coadaptation level of the HITL

exoskeleton control optimization process. This is why the

metabolic rate of P2 remained steady or even increased

slightly during the process. In the future, we plan to conduct

more experiments to research the human-robot coadaptation

characteristics of extensive experienced human bodies.

P3, P4 and P5 experienced 64 sample consitions in the

HITL exoskeleton control optimization process and we s-

elected front 32 sample conditions because the latter 33-

64 sample conditions contained strong noise. Moreover, the

participants experienced physical fatigue that could affect

their characteristic curves. From Fig.5 (c), (d) and (e), these

three participants have moderate adaptation rates. The time

constants of P3-P5 are greater than P1 and P9, but smaller

than P7 and P10.

P6 and P10 also experienced 64 sample conditions and

we selected latter 33-64 sample conditions because the front

1-33 sample conditions have pauses in the experiment due

to equipment failures or algorithm errors. Fig.5 (f) and (j)

show that two participants have slower adaptation rates.

Especially for P10, whose time constant is the greatest of

all participants. This phenomenon is in accordance with

previous optimization experiments. In the experiments, P6

and P10 adapted to walking with the exoskeleton for a long

time.

P7 experienced 64 sample conditions in total. Fig.5 (g)

shows that P7 have a relatively slower adaptation rate. This is

also in line with our previous experiments. In the future, we
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TABLE V

EXPONENTIAL CHARACTERISTIC CURVES OF HUMAN-ROBOT COADAPTATION FOR EACH PARTICIPANT

Participant Threshold ε Selected Groups Time Constant τ Prior Exoskeleton Experience RMSE R2 Sample Condition Sequence

P1 0.015 9 59 NO 0.636 0.80 1− 64
P2 0.020 5 −2000 YES 0.543 0.07 1− 64
P3 0.030 6 128 NO 0.585 0.60 1− 32
P4 0.040 13 238 NO 0.478 0.27 1− 32
P5 0.035 7 147 YES 0.355 0.55 1− 32
P6 0.030 5 256 NO 0.524 0.27 1− 32
P7 0.025 5 312 YES 0.214 0.75 1− 64
P8 0.018 8 192 YES 0.686 0.49 1− 64
P9 0.045 2 31 YES 0.738 0.82 1− 64

P10 0.025 5 769 NO 0.303 0.21 1− 32
P11 0.014 4 250 NO 0.231 0.81 1− 64

plan to study the reason why P7 have a slower adaptation rate

although this participant had experience in using exoskeleton.

P8 and P11 all experienced 64 sample conditions. From

Fig.5 (h) and (k), these two participants have moderate

adaptation rates like P3-P5. This is also in line with our

previous experiments.

V. CONCLUSIONS

Using HITL optimization method, a human body walking

with an assisted exoskeleton is a human-robot coadaptation

process. Exoskeleton optimized control parameters to reduce

the metabolic rate during human walking. At the same

time, the human body adjusted themselves to adapt to the

exoskeleton. In this study, we analyzed the process of human

bodies learning to walk with an exoskeleton and quanti-

fied the characteristics of human-robot coadaptation during

a HITL exoskeleton control optimization process. Results

from our study demonstrated that the process of human-

robot coadaptation conforms to exponential curves, subject’s

metabolic rate decreased exponentially during exoskeleton

control optimization process. Moreover, for the optimization

process of four parameters with each condition sampled

two minutes, the time constant of eleven participants were

averaged at 238± 207 optimization sample conditions. The

results may to some extent provide an intuitive understanding

of the characteristics of human-robot coadaptation during

exoskeletons assisted walking and are helpful for guiding

the training process of robot assisted human motion.

As a future work, we plan to conduct experiments include

more participants to validate the exponential characteristics

curve of human-robot coadaptation, and further research

the human-robot coadaptation characteristics between expe-

rienced and inexperienced participants. Moreover, as our pre-

vious system concerned more on unilateral exoskeleton assis-

tance, we expect to improve our system to study the human-

robot coadaptation characteristics in bilateral exoskeleton

assistance situation.
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